Limour

Limour

临床医学在读。

【迁移】CellTypist 注释免疫细胞亚群

安装 CellTypist#

conda create -n celltypist -c conda-forge r-base=4.1.2
conda activate celltypist
conda install -c conda-forge r-seurat=4.1.0 -y
conda install -c conda-forge r-irkernel=1.3 -y
IRkernel::installspec(name='celltypist', displayname='r-celltypist')
conda install -c conda-forge scanpy=1.8.2 -y
/opt/conda/envs/celltypist/bin/pip3 install celltypist -i https://pypi.tuna.tsinghua.edu.cn/simple
conda install -c conda-forge r-reticulate=1.24 -y
python3
import celltypist
celltypist.models.download_models(force_update = False)

加载包#

Sys.setenv(RETICULATE_PYTHON = "/opt/conda/envs/celltypist/bin/python3.8")
library(reticulate)
scanpy = import("scanpy")
celltypist = import("celltypist")
pandas <- import("pandas")
numpy = import("numpy")
py_config()

加载数据#

library(Seurat)
sce <- readRDS("~/upload/yy_zhang_data/scRNA-seq/pca.celltype.rds")
Myeloid <- subset(sce, cell_type=='Myeloid')

seurat 转 scanpy#

# 数据矩阵, scanpy与Seurat的行列定义相反
adata.X = numpy$array(t(as.matrix(Myeloid[['RNA']]@counts)))
# 对每个细胞的观察
adata.obs = pandas$DataFrame([email protected][colnames(Myeloid[['RNA']]@counts),])
# 对基因矩阵的注释
adata.var = pandas$DataFrame(data.frame(gene = rownames(Myeloid[['RNA']]@counts), row.names = rownames(Myeloid[['RNA']]@counts)))
 
# 组装AnnData对象
adata = scanpy$AnnData(X = adata.X, obs=adata.obs, var=adata.var)

进行预测#

model = celltypist$models$Model$load(model = 'Immune_All_AddPIP.pkl')
model$cell_types
scanpy$pp$normalize_total(adata, target_sum=1e4)
scanpy$pp$log1p(adata)
predictions = celltypist$annotate(adata, model = 'Immune_All_AddPIP.pkl', majority_voting = T)

预测添加到 seurat 对象#

Myeloid = AddMetaData(Myeloid, predictions$predicted_labels)
加载中...
此文章数据所有权由区块链加密技术和智能合约保障仅归创作者所有。